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Overview

Bayesian tomographic reconstruction from two views
» deformable geometric models with smoothness prior
» uncertainty characterized by posterior probability distribution

Markov Chain Monte Carlo (MCMC) technique

» for drawing random samples from probability density
functions

» tool for estimating and visualizing uncertainties in models
Optical tomography

» Inversion of time-dependent diffusion process

» adjoint differentiation of solution to PDES

Uncertainties in ssimulation predictions



Bayesian approach to model-based analysis

« Models
» used to describe and analyze physical world
» parametersinferred from data
e Bayesian analysis
» uncertainties in parameters described by probability
density functions (pdf)
» prior knowledge about situation may be incorporated

» gquantitatively and logically consistent methodology for
making inferences about models
» open-ended approach
 can incorporate new data
 can extend models and choose between alternatives



Bayesian viewpoint

 Focus on probability distribution functions (pdf)

» uncertainties in estimates more important than the estimates
themselves

* Bayeslaw: p(ald) ~p(a) p(d|a)
» Where a Is parameter vector and d represents data
» pdf before experiment, p(a) (called prior)
» modified by pdf describing experiments, p(dla) (likelihood)
» yields pdf summarizing what is known, p(ald) (posterior)
o Experiment should provide decisive information
» posterior distribution much narrower than prior



Bayesian model building

o Stepsin model building
» choose how to model (represent) object

» assign priorsto parameters based on what is known
beforehand

» for given measurements, determine model with highest
posterior probability (MAP)

» asSsess uncertainties in model parameters
e Higher levels of inference
» assess suitability of model to explain data
» If necessary, try alternative models and decide among them



Example - tomographic reconstruction

* Problem - reconstruct object from two projections
» 2 orthogonal, parallel projections (128 samples in each view)
» additive Gaussian noise with rms dev. = 5% of proj. max

Original object




Likelihood

 Likelihood defined as p(d|a) = probability of datad,
given model and its parameters a

« For measurements subject to additive, independent
Gaussian-distributed noise, minus-log-likelihood is

(d—a*)
G

—logip(dla)] =¢(@)=;1"=;%

» where d istheith measurement,
d” isits predicted value (for specific a),
o IS Irms noise in measurements



Standard reconstruction approaches

o “Standard” reconstruction algorithms

» based on minimizing minus-log-likelihood (z)2) using
additive or multiplicative updates, non-negativity constraint

» do not reproduce original image

Additive-update Maximum-entropy
Original object reconstruction reconstruction




Model-based Bayesian reconstruction -
make use of prior information

e Assumptions about object
» Interior density is uniform
» abrupt change in density at boundary
» boundary isrelatively smooth

* Object model chosen to incorporate these assumptions
» Object boundary - deformable geometric model
» boundary smoothness achieved through prior
» Interior has uniform density (known)
» exterior density is zero
» only variables are those describing boundary



Probabilistic interpretation of prior
for deformable boundary model

» Probability of shape: -~ eXp[— oS gﬁszS]

(27)?
» Where ¥ = boundary curvature

o Sample prior pdf usng MCMC

» shows variety of shapes deemed admissible before
experiment, capturing our uncertainty about shape

» decide on o =5 on basis of appearance of shapes

NAVAVAS

Plausible shapes drawn from prior for oo = 5
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The Bayes Inference Engine

Flexible modeling tool developed in DX-3
» 0bject described as composite geometric and density model
» measurement process (principally radiography)
User interface via graphically-programmed data-flow
diagram
Full interactivity through Object-Oriented design

BIE provides
» MAP estimate by optimization
» gradient calculated by adjoint differentiation
» random samples of posterior by MCMC
» uncertainty estimates
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The Bayes Inference Engine

 BIE data-flow diagram to find MAP solution
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o Optimizer uses gradients that are efficiently calculated
by adjoint differentiation in code technique(ADICT)
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M AP reconstruction

o Determine boundary that
maximizes posterior
probability (for oo = 5)

e Result not perfect, but very
good for only two

projections
: 3 Reconstructed boundary
e Question: “How do we (gray-scale) compared with
quantify uncertal nty iNn shape of original object (red line)

reconstruction?’
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Markov Chain Monte Carlo

Generates seguence of random samples from an
arbitrary computed probability density function

« Metropolis algorithm: Probability(x,, X,)

» draw tria step from X, accepted step
symmetric pdf, i.e., * rejected step
t(A xX) = t(-A X)

» accept or regject trial step
on basis of probability at
new position rel. to old

» Simple and generally
applicable

» reliesonly on calculation X,
of target pdf for any x
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Usesof MCMC

Permits evaluation of expectation values of q(x)
» for K samples, (f(x)) =]f(x) q(x) dx = (UK)Z, f(x,)
» typically used to calculate mean {x) and variance {(X - {(x))?)

Useful for evaluating integrals, such as the partition
function for properly normalizing the target pdf

Dynamic display of sequence as video loop

» provides visualization of uncertainties in model and range of
model variations

Automatic marginalization

» When considering any subset of parameters of an MCMC
seguence, the remaining parameters are marginalized over
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MCMC Issues

Confirmation of conver gence to target padf
» 1S sequence in thermodynamic equilibrium with target pdf?
» validity of estimated properties of parameters (covariance)
Burnin

» at beginning of sequence, may need to run MCMC for
awhile to achieve convergence to target padf

Use of multiple sequences
» different starting values can help confirm convergence
» natural choice when using computers with multiple CPUs

Accuracy of estimated properties of parameters
» related to efficiency, described above

Optimization of efficiency of MCMC
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Hamiltonian hybrid algorithm

» called hybrid because it alternates Gibbs & Metropolis steps
» associate with each parameter x; afictitious momentum p,
» define a Hamiltonian
H=o¢(X) +Xp4(2m); ¢=-loga(x)); aq(x)=target distr.
» construct anew pdf:
q'(x, p) = exp(- H(x, p)) = a(x) exp(-Z p;/(2 m))
» can easlly move long distancesin (X, p) space at constant H using
Hamiltonian dynamics; so Metropolis step is very efficient

» requires gradient* of ¢ (minus-log-prob)
» Gibbs step: draw p from known Gaussian pdf (at fixed x)
» efficiency may be better than Metropolis for large dimensions

* adjoint differentiation provides efficient gradient calculation
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Hamiltonian hybrid algorithm

P

—
k+2 ' S \

k+ !

k.

Typical trajectories:
red path - Gibbs sample from momentum distribution
green path - trajectory with constant H, followed by Metropolis
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The Bayes Inference Engine

 BIE data-flow diagram to produce MCM C sequence

Input projections
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 MCMC module implements Metropolis algorithm
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Uncertainties in two-view reconstruction

 From MCMC samples from posterior with 150,000
steps, display three selected boundaries

e These represent alternative plausible solutions

compared to original object compared to MAP estimated
object 20



Posterior mean of gray-scale image

» Average gray-scale Images O_V‘fr Posterior mean image
MCMC samples from posterior compared to

» Value of pixel isprobability it MAP boundary (red line)
lies inside object boundary

» Amount of blur inedgeis
related to magnitude of
uncertainty in edge localization
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Credible interval

* 95% credible interval of boundary localization for
two-view reconstruction compared with original
object boundary (red line)

» narrower at tangent points
» 92% of original boundary
liesinside
95% credible interval

e Marginalized measure
of uncertainty -

Ignores correlations
among different positions
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Stiffness of posterior related to uncertainty
 Interpret ¢ = - log probability

Applying force (white bar) to

as potential function; sum of  MAP boundary (red) moves it to
new location (yellow-dashed)

» deformation energy (prior)
» 51 (likelihood)
e Stiffness of model
proportional to curvature of ¢

 Displacement obtained by
applying aforceto MAP
model and reminimizing ¢
proportional to force times
covariance matrix
(for Gaussian approximation)
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Inversion of complex ssimulations

e Advanced techniques are required to cope with large data
structures and models with numerous parameters

» Optimization
 gradient-based quasi-Newton methods (e.g., CG, BFGS)
« adjoint differentiation for efficient calculation of gradients
» multiscale methods for controlling optimization process

» Bayesian methods
» overcome ill posedness of inversion through use of prior knowledge
» Markov chain Monte Carlo to characterize uncertainties

» Appropriate higher-order models
* Markov random fields

 deformable geometrical models
 but also consider lowest order, elemental representations
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Simulation of light diffusion in tissue
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0.7< D <1.4 cm?ns?t (1,=0.1 cm?)
» for assumed distribution of diffusion coefficients (left)
» predict time-dependent output at four locations (right)

» reconstruction problem - determine image on left
from data on right
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Time-dependent finite-difference calculation

o Data-flow diagram shows calculation of time-dependent
measurements by finite-difference ssmulation

 Calculation marches through time steps At
» new state U, ., depends only on previous state U,
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Adjoint differentiation of forward calculation

o Adjoint differentiation calculation precisely reverses
direction of forward calculation
 Each forward data structure has an associated derivative

» U_ propagates forward, ;J” goes backward (9 =5 x°)
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Reconstruction of simple phantom

$ p=11 p=2
 Measurements
» sectionis(6.4cm)?, 0.7 <D <14 cm?ns?t (u .= 0.1 cnmrl)
» 4 input pulse locations (middle of each side)
» 4 detector locations; intensity measured every 50 psfor 1 ns
e Reconstructions on 64 x 64 grid from noisy data (rmsn = 3%)

* Prior based on Markov random field with adjustable Lp norm
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SUNY

Broogyn Reconstruction of Infant’s Brain |

Reconstruction
init. guess D =1 cm?/ns)

Original MRI data

D [cm2\ns]

Sources & Detectors

hematoma (left side) and : . ~ _
cerebrospinal fluid pocket (60 iterations ~ 70 min)

(upper right)
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Applications of adjoint differentiation

lmaging through refractive, reflective, diffusive media
» selsmology, medical and NDE ultrasound, ...

Sengitivities in large-scale simulations (data assimilation):
» atmosphere models (Ron Errico, NCAR; Bob Fovell, UCLA)
» fluid dynamics; hydrodynamics (Rudy Henninger)

Optimization in large engineering design problems:

» optical lens systems, geometry of integrated circuits,
aerodynamic shape, engines

Uncertainty analysis
» sengitivity of uncertainty variance to each contributing cause

Markov Chain Monte Carlo (e.g., Hamiltonian method)

» generation of random samples from a prob. dens. function
30



Quantification of uncertaintiesin
simulation predictions

« Bayesian approach to analyzing single experiments
» estimation of model parameters and their uncertainties

e Estimating uncertainties in simulation code
predictions for new situation

« Graphical probabilistic modeling

» analysis of numerous experiments in terms of many
physical models

» complete uncertainty analysis
» check consistency among experiments (model checking)
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Simulation code

.. LIJ(t)
Initial State : :
—>
¥(0) Simulation
Model A
o

e Simulation code predicts state of time-evolving system:
Y(t) = time-dependent state of system
Y(0) = initial state of system
* Properties of one system component described by physics
model A with parameter vector o (e.g., constitutive relations)
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Comparison of simulation with experiment

Measurements, Y

” Y(t) |—> -Inp(Y [ Y*)
ILE] SRl Smulation |—| Measurement |+,
\P(O) System Model Y*(OC)

Modd A Forward modeling
o of experiment

e Measurement system model transforms the simulated state of the
physical system Y¥(t) into measurements Y* that would be
obtained in the experiment

e Mismatch with data summarized by minus-log-likelihood,
-Inp(Y | Y*) =3X?
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Parameter estimation - maximum likelthood

Measurements, Y

L>

” Y(t) -Inp(Y |Y*)
Initial State Simulation [—> Measurement | = _ Y, X?
¥(0) System Model Y* (o)

Moc(alxel A Optimizer [«

Optimizer adjusts parameters (vector o) to minimize -In p(Y [Y* (o))
Result is maximum likelihood estimate for o (also known as minimum-
chi-sguared solution)

Optimization process is accelerated by using gradient-based algorithms
along with adjoint differentiation to calculate gradients of forward model

34



Parameter uncertaintiesviaMCMC

Measurements, Y

()

Initial State Simulation
{¥(0)}

Modda A
{o}

M easurement

L>

-Inp(Y [Y*)

— 1/2 XZ

System Model Y*(o;

MCMC

-Inp(a]Y)

<€

Markov Chain Monte Carlo (MCMC) agorithm generates a random
seguence of parameters that sample posterior probability of
parametersfor givendataY, p(o|Y), which yields plausible set of

parameters{ o} .

Must include uncertainty in initial state of system, {'¥(0)}
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Simulation of plausible predictions -
characterize uncertainty in prediction of new situation

initial State Smulation |—>
{¥(0)}
Model A new physical
Lo} situation

o Generates plausible predictions for known uncertaintiesin
parameters
» {o} = plausible sets of parameter vector o
» {¥Y(t)} = plausible setsof dynamic state of system
e Monte Carlo method - run ssimulation code for each random draw
from pdf for o, p(at].), to obtain set of predictions {¥(t)}

Prediction for
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Plausible outcomes for many models

Initial State : :
Simulation
{¥(0)}

{ (0}
>

Modd A Model B
{o} {B}

* Integrated simulation code predicts plausible results for known
uncertaintiesin initial conditions and material models
» {o} = plausible sets of parameter vector o for material A
» {B} =plausible sets of parameter vector 3 for material B
» {¥Y(0)} =plausible sets of initial state of system
» {WY(t)} = plausible setsof dynamic state of system
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Validation Experiments

Full validation requires hierarchy of experiments

e Basic experiments determine v0— PPE s wp

Individual physics models @

o Partially integrated experiments
Involve combinations of two or

more elemental models QS

PDE

Y(0) —>
Solver

> (1)

* Fully integrated experiments Q g))
require complete set of models vo —>|  PE L e
needed to describe final ol

application of ssimulation code Q\S
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Graphical probabilistic modeling

Analysis of experimental data'Y o,
Improves on prior knowledge about
parameter vector o p(Y |o)

Bayes law:

p(a | Y) ~p(Y | o) p(ar)
(posterior ~ likelihood x prior) pla]Y)

Use bubble to represent effect of

p(c)

analysis based on data Y
In terms of logs:

“Inpla]Y) = p(0) p(t]Y)
-Inp(Y | o) - In p(o) + constant

Not the same as a Bayesian network

Oy
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Graphical probabilistic modeling

Propagate uncertainty through a sequence of analyses

p(o0) p(ocIYl)/O p(on BIY, Y))
Exp.1 « Exp.2 of >
p(B)

. . . p(a|Y,) p(B)
First experiment determines B —_—

o, With uncertainties given by i
p(a]Y )
Second experiment not only :/ %B)

determines [3 but also refines
knowledge of o

Outcomeisjoint pdf in o and po, BIY,Y))

B, p(e, BIY,Y,) (NB: -
correlations) 1
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Example of analysis of several experiments

>
plaByolY,Y,Y,Y, Yy

Output of final analysisisfull joint probability for all
parameters based on all experiments

Use of Gaussian pdfs simplifies computations
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Model checking
Check that model consistent with all experimental data

|mportant part of any analysis o,
Check consistency of full

posterior wrt. each of its
contributions.

Example shown at right:

» likelihoods from Exps. 1 and 2 are
mutually consistent

» however, Exp. 2 isinconsistent with
posterior (dashed) from all exps.

» Inconsistency must be resolved in
terms of correction to model and/or
Interpretation of experiment
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Summary

* A methodology has been presented to combine
experimental results from many experiments relevant
to several basic physics models in the context of a
simulation code

* Propose building to implement this approach to

» Serve as adatabase of experiments showing links between
analyses

» permit logically consistent inferences about models based on
all information

» provide a natural way to understand limits to parameter
adjustment to match data from fully integrated experiments
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Summary (cont’ d)

 Many challengesremain
» Systematic experimental uncertainties (effects common to
many data)
» Identification and resolution of inconsistencies between
experiments and simulation code

» Inclusion of other sources of uncertainty: material
Inhomogeneity, chaotic or turbulent behavior, numerical
computation
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